onents, mechanisms and clinical significance. Curr Top Med Chem 1: 5971. 7. Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of 193275-84-2 Pseudomonas aeruginosa. Mol Microbiol 23: 345354. 8. Kohler T, Epp SF, Curty LK, Pechere JC Characterization of MexT, the ‘regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181: 63006305. 9. Maddocks SE, Oyston PC Structure and function of the LysR-type transcriptional regulator family proteins. Microbiology 154: 36093623. 10. Maseda H, Saito K, Nakajima A, Nakae ” T Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 192: 107112. 11. Sobel ML, Neshat S, Poole K Mutations in PA2491 promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187: 12461253. 12. Poole K Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56: 2051. 13. Williams P, Camara M Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12: 182191. 14. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines reveals a role for 4hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101: 13391344. 15. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184: 64726480. 16. Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77: 15271538. 17. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96: 1122911234. 18. Fuqua WC, Winans SC, Greenberg EP Quorum sensing in bacteria: the LuxR-LuxI ” family of cell density-responsive transcriptional regulators. J Bacteriol 176: 269275. 19. Miller MB, Bassler BL Quorum sensing in bacteria. Annu Rev Microbiol 55: 165199. 20. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21: 11371146. 21. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187: 43724380. 22. Lepine F, Milot S, Deziel E, He J, Rahme LG Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15: 862869. 23. Favre-Bonte S, Kohler T, Van Delden C Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52: 598604. 24. Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC ‘Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183: 52135222. 25. Fukuda H, Hosaka M, Iyobe S, Gotoh N, Nishino T, et al. nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. A